Seminar Series on Graph Neural Networks 01
Introduction to Graph Mining and Graph Neural Networks

Yong-Min Shin
School of Mathematics and Computing (Computational Science and Engineering)

Yonsei University
2025.03.31

ASHHIASHE (HIAFIIOFOF G A
S| LB (A LHrera sy III L (A] P
S

School of Mathematics and Computing

(Computational Science and Engineering) Gwangju Institute of Science and Technology

Before going in....

Wrap-up: Message passing all the way up
(Up-to-date comprehensive survey on GNN archtiectures)

Towards application of graph neural networks

Towards efficient graph learning Explainable graph neural networks

Fundamental topics on graph neural networks

On the representational power of graph A graph signal processing viewpoint of On the problem of oversmoothing and
neural networks graph neural networks oversquashing

Introduction to graph mining and graph neural networks
(Current session, basic overview to kick things off)

* Presentation slides are available at: .
(Some of the topics may change in the future for a better alternative) (jordan7186.github.io/presentations/) |m =

1. Understanding of graphs as a general data type
2. Understanding of the general framework of graph neural networks (GNNs)
3. High-level understanding of several key GNN architectures: GCN & GraphSAGE

Understanding of graphs as a general data type

*This part is heavily influenced by one of my academic heros, Petar Velickovi¢. These are some materials from his public materials that | have referred to:
- (Slide) Everything is Connected: Graph Neural Networks from the Ground Up (2021)
- (Blog) Graph & Geometric ML in 2024: Where We Are and What’s Next (Part Il — Applications)

Graphs as an abstract datatype °

Graphs are an abstract type of data where nodes (entities) are connected by edges (connections)

(Optional) (Optional)
Node features / attributes Node features / attributes
Node ' ER 'H NN

B
(Optional)
Edge features / attributes

(Optional)
dge features / attributes

Undirected graph Directed graph

...But honestly, looking at this does not result in a practical understanding of graphs.

Therefore, we will look at various applications in the field of graph machine learning
before moving our discussion further.

Area 1) Biology & Chemistry Research

Example 1: The discovery of Halicin, GNN-guided antibiotic discovery

Training GNNs with real-world chemical dataset
Node: Atom @ a&) Drug dataset (~6K)

Edge: Atom bonds Acquire potential lead

Edge feature: Bond type etc. oﬁo}o - N compounds that acts a
| gainst E.coli

(e0@)

E.coli growth inhibition

! mm) Prediction task

Training set

(10* molecules) 4
_
Drug Repurposing Hub
HALICIN
(] .
s
A Deep Learning Approach

to Antibiotic Discovery

23 Kevin Yang,%*1° Kyle Swanson,%*1° Wengong Jin,* Andres Cubillos-Ruiz," 2%
i acNair, Shawn French,5 Lindsey A. Carfrae,® Zohar Bloom-Ackermann,7

Further screening
& Empirical testing

ic D. mmi S. Jaakkol na B: 5,8,9,11,
ngineering, Synthetic Biology Center, Institute for Medical Engine Massachusetts Institute of
USsA

bridge, MA 02142, USA
covery and Synthesis Consortium, Massachusetts Institute of Technology, Cambridge, MA

Bacterial cell death

“Computer Science and Artifiial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
SWyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
SDepartment of Biomedical , Michael G. DeGroote Institute for Infectious Disease Research, McMaster University,

Acinetobacter baumannii
Clostridioides difficile

MA 02115, USA
ology, Cambridge, MA 02139, USA
alth, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.
Yang, Kevin, et al. "Analyzing learned molecular representations for property prediction." Journal of chemical information and modeling 59.8 (2019): 3370-3388.

Area 2) ETA prediction

Example 2: DeepMind’s improvement of Google map’s ETA (Estimated Time of Arrival) prediction

S S ~
Google Maps ETA Improvements Around the World : { : 1
: :) | Predictions
Denver Chicago Copenhage Bangkol n : : %
20% 27% T6% ﬁko/: Anonymised Supersegments Graph neural
travel data Analysed Training network
| data
S S

Service

(©N

Google Maps Candidate

rOUtlng user routes
system A-B

Unlike chemical datasets, constructing a graph is less straightforward.
In these cases, how to construct the graph is also a crucial contribution.

Derrow-Pinion, Austin, et al. "ETA prediction with graph neural networks in google maps.“, CIKM 2021.
Deepmind, “Traffic prediction with advanced graph neural networks”

Area 3) Recommdender systems

Example 3: Pinterest (social platform)

Image & User interaction in Pinterest

,. User-item interaction graph
y . 3
&1
Blue accents
U9 -3
12
] .3
3
Saved from
therecipeblog.com Visit
° 9 people tried it 90% ’ .
. Fireplace /L 3
®

Source: Andrew Zhai (Pinterest) talk @WWW 2022 (link)
Right figure: Hou et al., Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity, SIGIR 2024

https://www2022.thewebconf.org/wp-content/uploads/Sponsors/WWW2022-Pinterest.pdf

Area 4) Modeling physical systems

Example 4: Simulation of complex physical systems

Xtx
B Learned simulator, sy
(1]
=
e Update
dp
8
o]
8 (b) ENCODER GNL PROCESSOR r GNM;\ DECODER
V X — _Go_r_. G' - GMT! H—ac¥ ¥
(c) Construct graph W0 (d) Pass messages () Extract dynamics info
J
. 0 2 o g TEY 8 .
e . = ©:.i ¢ iei,j ¢ iez‘,j <o "
) o0 x e\ P A/ A\ . v ¢® Vi
2 ®.9 ¢ ® P06 @ Y—E ¢ ¢
« ‘ « ¢ ¢

Time —»

Sanchez-Gonzalez et al., Learning to Simulate Complex Physics with Graph Networks, ICML 2020

In academia; Benchmark datasets in the literature

Social Citation / Web Molecules Biology / Simulation / etc.
“ 2)
‘l\'-_ o
s ‘:’ .
H :.-; : [
.._‘.:-:,, \ %
= L4 . ¢
Observed dynamics Interaction graph
’ J
: 3) 4)
Node: People / Account Node: Paper Node: Atom ?
Edge: Connection Edge: Citation Edge: Bond =3
Node feature: Metadata Node feature: Abstract Node feature: Atom type

Edge feature: Bond type

ff Example benchmark datasets
* *Planetoid dataset

* Reddit (Cora/Citeseer/Pubmed) * QM9 1) **PPI (protein-protein interaction)

* Ego-Facebook « Coauthor * Zinc 2) Physical simulation (Kipf et al., 2018)

« Github * WebKB « MUTAG 3) 3D point cloud (Wang et al., 2019)
(Texas/Cornell/etc.) 4) Road network (Derrow-Pinion et al., 2021)

Yang et al., Revisiting Semi-Supervised Learning with Graph Embeddings, ICML 2016

Kipf et al., Neural Relational Inference for Interacting Systems, ICML 2018

Wang et al., Dynamic Graph CNN for Learning on Point Clouds, ACM Transactions on Graphics 2019

Derrow-Pinion et al., ETA Prediction with Graph Neural Networks in Google Maps, CIKM 2021

**Image source: https://www.researchgate.net/publication/324457787_iTRAQ_Quantitative_Proteomic_Analysis_of_Vitreous_from_Patients_with_Retinal_Detachment/figures?lo=1

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Reddit.html
https://snap.stanford.edu/data/ego-Facebook.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.GitHub.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Coauthor.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.WebKB.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.ZINC.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html

Representing the graph as a adjacency matrix

-
-

e ~. *We treat undirected edges as

63/‘\@“ two directed edges going in both directions
N/ //

1 2 3 4 5
110[1(0(0|O0
» 211011111
3]011]0(0]|1
4/011(10(10|0
5(011(0|1]0
Undirected graph Assign arbitrary node ordering Adjacency matrix
- Graphs with canonical node ordering - Represent edge by assigning 1 for (i, j)-th
is not common element if node i and j are connected
- Related research topic: Positional - For weighted graphs: Assign a real
encoding of nodes number
(As an example, see [1]) - For graphs with multiple edges: Assign
integers

- For directed graphs: Asymmetric matrix

Maskey et al., Generalized Laplacian Positional Encoding for Graph Representation Learning, NeurlPS 2022 Workshop on Symmetry and Geometry in Neural Representations

Representing the graph as a adjacency matrix

-
-

-~ =~ *We treat undirected edges as

63/\@“ two directed edges going in both directions
N/ //

Undirected graph Assign arbitrary node ordering
- Graphs with canonical node ordering

is not common

- Related research topic: Positional
encoding of nodes
(As an example, see [1])

D (12.2123).32),.

Edge list
Represent graph by listing all edges
Notice that for undirected edges,
(i, j) and (j,i) both appear
More memory efficient than (dense)
adjacency matrix

Maskey et al., Generalized Laplacian Positional Encoding for Graph Representation Learning, NeurlPS 2022 Workshop on Symmetry and Geometry in Neural Representations

Understanding of the general framework of graph neural networks (GNNs)

13

A simple, popular, and straightforward GNN

GCN (Graph Convolutional Network): Kipf & Welling, ICLR 2017

We are now ready to understand the basic principles of GNN, by looking at the most popular architecture.

299reg51i0 %

9 __ \

?I [] + I] + [|
’ AX E [I
= /Y I - .

0 1 1 1 — .
= (1) m) (101 0|[l=| == >
== 1 1 0 0f]| == U
0 1 1 1 1 0 0 0/ \m=m D + =3 + =3
A 1 010 - - MLP
1 1 0 O . - .
1 0 0 O [

Notice that, this whole procedure can be neatly expressed as: O(AX@)
Of course, all of this still holds when we scramble the node ordering (permutation invariant)

Non-linear activation function O'() n: # of nodes
Adjacency matrix A -~ Ran d: node feature dimensions
: nxd . ,
Node feature matrix X - R d’: dimension for the next layer

/
Learnable matrix @ & RdXd

A simple, popular, and straightforward GNN

GCN (Graph Convolutional Network): Kipf & Welling, ICLR 2017

Of course, we can get creative with the graph structure to solve some practical issues

Problem 1: The information of the neighbor nodes are aggregated but not the node itself.
Problem 2: The adjacency matrix is not normalized, and the scale of the feature vectors may explode for repeated layers.

Resolution to problem 1 Resolution to problem 2
Add self-loops to each node Normalization of A
—/
9 Neighbor count: 3
’ — 4 0 0 0
Neighbor count: 4 0 3 0 0
9 Neighbor count: 3 ‘D_ 0 0 3 0
— 0 0 0 2
Neighbor count: 2
=
R
0 1 1 1 4 12 12 V8
a1 o 1 0 o LoDy
|1 1 0 A=p-12Ap-iz- (V2 3 3
1 0 0 1 VB 33 (1)
R 0 0 —_
NG 2

~

Final layer of GCN: 0 (A X ©)

Abstraction: A general message-passing layer of GNNs

3. Readout phase

1. Message passing phase (Aggregation) 2. Update phase (Transformation) (Only for graph-level tasks)
t+1 E : t t t+1 t t—|—1 T T
Mt th)hw)eU’w) h,v —U(h) hG :R(hl7 ’hV)
weN (v)

*Usually, we cite these papers for the term “message-passing”
[First formal introduction of the concept] Gilmer et al., “Neural Message Passing for Quantum Chemistry”, ICML 2017
[Comprehensive discussion & abstraction] Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, arXiv 2021

Abstraction: A general message-passing layer of GNNs

GNN layer (Message-passing neural networks)

SP

hu = ¢ Xus 69 ¢(Xu, X,U) This operation must be permutation

invariant to ensure the same result for
vEN,, different node orderings!
4 Summation / Average / Max pooling etc.

So if we re-describe GCN for node 4, it would be...

N, = {1,3,5} U {4} zp(y;u,}q):ﬂl74

x; ¢ = MLP

*Usually, we cite these papers for the term “message-passing”
[First formal introduction of the concept] Gilmer et al., “Neural Message Passing for Quantum Chemistry”, ICML 2017
[Comprehensive discussion & abstraction] Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, arXiv 2021

High-level understanding of several key GNN architectures

18

A list of noteworthy GNN architectures

Frequently used architectures (Must know!)

GCN) Kipf & Welling, “Semi-supervised classification with graph convolutional networks”, ICLR 2017
GraphSAGE) Hamilton et al., “Inductive representation learning on large graphs”, NeurlPS 2017
GAT) Velickovic et al., “Graph attention networks”, ICLR 2018

GIN) Xu et al., “How powerful are graph neural networks?”, ICLR 2019 (we will come back to this in later seminars)

Lightweight GNNs (we will come back to this in later seminars)

SGC) Wu et al., “Simplifying graph convolutional networks”, ICML 2019
LightGCN) He et al., “LightGCN: Simplifying and powering graph convolutional network for recommendation, SIGIR 2020

Spectral viewpoint of GNNs (we will come back to this in later seminars)

ChebNet) Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering”,
NeurlPS 2016

GraphSAGE: Introduction of neighbor sampling

Problem: As we stack multiple layers, we introduce a LOT of neighboring nodes during message-passing.

1. Sample neighborhood 2. Aggregate feature information
from neighbors

Sampling the neighbor nodes (contrast to using all neighbors) reduce
memory complexity and still achieves good performance.

*In my experience, these type of intuitions (trading off speed and/or memory by dropping some nodes/edges) work better for social graph types

GraphSAGE: Introduction of neighbor sampling

1 BX « B:
2 fork = K...1do
3 | Bl BF,
4 | foruc B*do
5 | BF! B! U Ni(u);
6 end
7 end
Layer K Layer (K — 1) Layer (K — 2)
@ Target node .\\ @« ®
Y
1-hop neighbors 2-hop neighbors

The sampling process is conceptually reversed compared to forward pass.

GraphSAGE: Introduction of neighbor sampling

9 fork=1...K do

10 for u € B* do
11 hk,ﬂ(”) — AGGREGA’]‘E;‘.({hﬁTl,\/u' € Ni(u)});
12 bt < o (W* - concat(hb~, h¥,));
13 hy; < h/|[h|2:
14 end
15 end
Layer (K — 2) Layer (K — 1) Layer K
T d
o7 — arget node .\ \‘ °
e - —-
2-hop neighbors 1-hop neighbors

The feed-forward process (message-passing) is conceptually reversed compared to forward pass.

Final note: Library for graph learning

PyTorch Geometric (link) Deep Graph Library (link)

PyG Documentation DEEP GRAPH LIBRARY

*Easy Dgep Learning on Graphs

@ PyG (PyTorch Geometric) is a library built upon O PyTorch to easily write and train Graph Neural
Networks (GNNs) for a wide range of applications related to structured data.

-

It consists of various methods for deep learning on graphs and other irregular structures, also
known as geometric deep learning, from a variety of published papers. In addition, it consists of

N . / .) Framework Agnostic Efficient And Scalable Diverse Ecosystem
easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-
< : Build your models with PyTorch, TensorFlow or Fast and memory-efficient message passing DGL empowers a variety of domain-specific
support, torch.compile support, DataPipe support, a large number of common benchmark datasets Apache MXNet. primitives for training Graph Neural Networks. projects including DGL-KE for learning large-
(based on simple interfaces to create your own), the GraphGym experiment manager, and helpful Scale to giant graphs via multi-GPU acceleration scale knowledge graph embeddings, DGL-LifeSci
transforms, both for Iearning on arbitrary graphs as well as on 3D meshes or point clouds <) 1F @ and distributed training infrastructure. for bioinformatics and cheminformatics, and
g . many others.

* Jure Leskovec (Standford/KumoAl/Snapchat) * Slower library updates (is this a bad thing?)
* Faster library updates (is this a good thing?) * Variable framework support
* (Seems like) A larger community

* Additonal library: NetworkX (link) — Library for graphs in general

NetworkX * Not a library for ML/DL

O(® Network Analysis in Python * Often used in junction with PyG/DGL

https://pytorch-geometric.readthedocs.io/en/stable/
https://www.dgl.ai/
https://networkx.org/documentation/stable/index.html

Final note: Library for graph learning

import torch
from torch_geometric.data import Data

edge_index = torch.tensor([[0, 1, 1, 2],

(1, @, 2, 1]1], dtype=torch.long)

x = torch.tensor([[-1], [@], [1]], dtype=torch.float)

data = Data(x=x, edge_index=edge_index)
>>> Data(edge_index=[2, 4], x=[3, 1])

You at minimum need to define data.edge_index
Node features are usually represented as data.x
Don’t forget to include both directions for
undirected graphs

Most graph processing/manipulation tools are in
torch_geometric.utils

1l Files

1b195a0

B github
I8 benchmark
8 conda
I docker
8 docs
= examples
B compile
8 contrib
8 cpp
Go to the examples |
B8 explain
folder in the repo [
i jit
8 multi_gpu
I8 pytorch_ignite
I8 pytorch_lightning
B quiver
“ README.md
] agnn.py
Y argva_node_clustering.py
arma.py
9 attentive_fp.py
] autoencoder.py
] cluster_gcn_ppi.py
9 cluster_gcn_reddit.py

] colors_topk_pool.py

Y cora.py

correct_and_smooth.py
] datapipe.py
b | dgcenn_classification.py

L] dgcnn_segmentation.py

Final note: Library for graph learning

examples

U s_wupn_pusnpy

] cora.py

h| correct_and_smooth.py
] datapipe.py

] dgenn_classification.py
] dgenn_segmentation.py
] dir_gnn.py

9 dna.py

] egc.py

9 equilibrium_median.py
] faust.py

9 film.py

] gatpy

1 gen.py

] gen2_cora.py

] gen2_ppi.py

Y geniepath.py

1 ginn.py

3 graph_gps.py

] graph_sage_unsup.py
Y graph_sage_unsup_ppi.py
] graph_saint.py

] graph_unet.py

1 hierarchical_sampling.py
] infomax_inductive.py

h| infomax_transductive.py

] kge_fb15k_237.py

If you want to know how to run
GCN, go to the gcn.py file!

Includes...
« How to prep the data

(with preprocessing, data splits etc.)
* How to define the model
* How to set up the training iteration
 How to measure performance

Takeaways

1. Graphs are entities (nodes) that are connected (edges)
2. Aot of problems can be formulated as a graph learning problem

3. Graph neural networks = Message-passing framework (Aggregate + Transformation)

Thank you!

Please feel free to ask any questions :)
Jjordan/186.github.io

27

